Smart solutions for

seamless navigation

Prof. Heidi Kuusniemi

Director Dept. of Navigation and Positioning Finnish Geospatial Research Institute (FGI) National Land Survey Docent, Satellite Positioning and Navigation Technologies Dept. of Real Estate, Planning and Geoinformatics School of Engineering Aalto University

"Navigation for the future" seminar, Aalto University, Design Factory 31st May, 2016

Finnish Geospatial Research Institute (FGI) of the National Land Survey (NLS) of Finland

Satellite navigation

- GPS, GLONASS, BeiDou, Galileo, IRNSS
- SBAS systems, especially EGNOS
- Interference detection and mitigation
- Receiver techniques
- Software-defined GNSS receivers
- Carrier-phase based positioning for precise navigation

Expertise areas of the

Dept. of Navigation

and Positioning

Intelligent mobility

Mobile location based services (mLBS)

GNSS

Positioning in intelligent transportation Positioning for maritime safety and situational awareness

Indoor navigation

- Sensor integration
- Indoor positioning
- Visual and DTV positioning
- Optical sensors e.g hyperspectral 3D measurements

Motivation for multi-technology approach to navigation

Reliable positioning is needed despite the situation

Dense forests, urban and indoor environments

While exposed to jamming or spoofing

 Multi-sensor and multi-system positioning

Positioning technologies (1)

- GNSS functions mainly in open sky environments but the majority of users are in urban and indoor condition
- With rapid advances in sensor techno communications, various positioning r developed
 - determining the locations of moving
 - typically satellite-based positioning c
 - typically WLAN and self-contained s

Positioning technologies (2)

NON-RF SYSTEMS

Technology	Pros	Cons
Inertial	Precise with expensive sensors Works in a variety of environments	Unusable without frequent corrections from external reference
Vision	High precision Works when instrumented	Limited range Extensive instrumentation
Ultrasound	Very inexpensive emitters and sensors High-precision	Limited range Very sensitive to surrounding noise
Infrared	Very inexpensive emitters and sensors High-precision	Limited range Very sensitive to surrounding noise

RF SYSTEMS

Technology	Pros	Cons
Cellular	Wide coverage	Precision < 150 m typically Some instrumentation needed
Local area networks (e.g.WLAN)	Access points widespread	Somewhat limited range Instrumentation needed
RFID	Low-cost	Limited range Extensive instrumentation needed
GNSS	Worldwide coverage Free to use	Accuracy 10 m unaided Limited indoor use

Seamless navigation and situational awareness

Novel methods for positioning

Signal of opportunity such as digital TV signals Continuosly exploring new methods of robust positioning

Visual positioning

Acoustic positioning

Infrastructure-free situational awareness

- Simultaneous
 Localization
 and Mapping
 (SLAM)
- Indoor positioning and context awareness using equipment carried by the user

- Multiple inertial sensors
- Camera
- Ranging
 equipment
 (ultrasound...)

Thank you!

heidi.kuusniemi@nls.fi

